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X-Ray Data Booklet

4.3  GRATINGS AND MONOCHROMATORS

Malcolm R. Howells

A. DIFFRACTION PROPERTIES

A.1  Notation and sign convention

We adopt the notation of Fig. 4.6 in which α and β have opposite signs if they are on opposite
sides of the normal.

A.2  Grating equation

The grating equation may be written

m dλ α β= +0(sin sin ). (1)

The angles α and β are both arbitrary, so it is possible to impose various conditions relating
them. If this is done, then for each λ, there will be a unique α and β. The following conditions
are used:

(I) ON-BLAZE CONDITION:

α β θ+ = 2 B , (2)

where θB is the blaze angle (the angle of the sawtooth). The grating equation is then

m d B Bλ θ β θ= +2 0 sin cos( ) . (3)
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β
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Fig. 4-6. Grating equation notation.
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(II) FIXED IN AND OUT DIRECTIONS:

α β θ– = 2 , (4)

where 2θ is the (constant) included angle. The grating equation is then

m dλ θ θ β= +2 0 cos sin( ). (5)

In this case, the wavelength scan ends when α or β reaches 90°, which occurs at the horizon

wavelength λ θH = 2 0
2d cos

(III) CONSTANT INCIDENCE ANGLE:  EQUATION (1) GIVES β DIRECTLY.

(IV) CONSTANT FOCAL DISTANCE (OF A PLANE GRATING):

cos
cos

β
α

=  a constant c ff , (6)

leading to a grating equation

1
0

2 2

2−






=m

d c ff

λ β β
– sin

cos
(7)

Equations (3), (5), and (7) give β (and thence α) for any λ. Examples of the above α-β
relationships are as follows:
(i) Kunz et al. plane-grating monochromator (PGM) [1], Hunter et al. double PGM[2],

collimated-light SX700 [3]
(ii) Toroidal-grating monochromators (TGMs) [4, 5], spherical-grating monochromators

(SGMs, “Dragon” system) [6], Seya-Namioka [7, 8] most aberration-reduced holographic
SGMs [9], variable-angle SGM[10], PGMs [11, 12, 13]

(iii) Spectrographs, “Grasshopper” monochromator [14]
(iv) SX700 PGM [15] and variants [10, 16, 3]

B.  FOCUSING PROPERTIES [17]

The study of diffraction gratings[18, 19] goes back more than a century and has included plane,
spherical [20, 21, 22], toroidal [23] and ellipsoidal[24] surfaces and groove patterns made by
classical (“Rowland”) ruling [25], holography [26, 27, 28] and variably-spaced ruling [29]. In
recent years the optical design possibilities of holographic groove patterns [30, 31, 32] and
variably-spaced rulings [13] have been extensively developed. Following normal practice, we
provide an analysis of the imaging properties of gratings by means of the path function F [32].
For this purpose we use the notation of Fig. 4.7, in which the zeroth groove (of width d0) passes
through the grating pole O, while the nth groove passes through the variable point P(w,l). The
holographic groove pattern is supposed to be made using two coherent point sources C and D
with cylindrical polar coordinates r z r zC C D D , , , , ,γ δ( ) ( ) relative to O. The lower (upper) sign in
eq. (9) refers



3

A (x, y, z )

Gaussian
image plane

XBD 9704-01331.ILR

B (x ′, y ′, z ′)

B0

P (ξ, w, l)

∆y ′

∆z ′

β
α

y

z ′

z

z

r ′

r

BR

O

Fig. 4-7*. Focusing properties notation.

to C and D both real or both virtual (one real and one virtual) for which case the equiphase
surfaces are confocal hyperboloids (ellipses) of revolution about CD. The grating with varied
line spacing d(w) is assumed to be ruled according to d w d v w v w( ) ...= + + +( )0 1 2

21 . We
consider all the gratings to be ruled on the general surface x a w lijij

= ∑  and the aij
coefficients[33] are given for the important cases in Tables 1 and 2.

B.1 Calculation of the path function F

F is expressed as
F F w l

F z C r z C r
m

d
f

ijk
ijk

i j

ijk
k

ijk
k

ijk ijk

=

= ( ) + ′ ′( ) +

∑   

where α β λ
, ,

0 .

(8)

and the fijk  term, originating from the groove pattern, is given by one of the following
expressions.

f
d

z C r z C r

n

ijk

i jk

k
ijk

k
ijk

ijk

= ( ) ± ( ){ }










−δ

λ
γ δ

( )

, ,

1

0

0

Rowland

holographic

varied line spacing

C C D D (9)

The coefficient Fijk  is related to the strength of the i,j aberration of the wavefront diffracted by
the grating. The coefficients Cijk  and nijk  are given up to sixth order in Tables 3 and 4 in which

the following notation is used:

T T r
r

a S S r
r

a= ( ) = − = ( ) = −,
cos

cos , cosα α α α α
2

20 022
1

2     
(10)
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Table 1:  Ellipse coefficients Qij from which the aij’s are obtaineda[33]

  j

i

0 1 2 3 4 5 6

0 0 0 1 0 C 4 0 C2 8

1 0 0 A 0 3 4AC 0 *

2 1 0 2 22A C+( ) 0 3 4 82C A C+( ) 0 *

3 A 0 A A C2 3 22 +( ) 0 * 0 *

4 4 42A C+( ) 0 8 24 3 84 2 2A A C C+ +( ) 0 * 0 *

5 A A C4 3 42 +( ) 0 * 0 * 0 *

6 8 12 84 2 2A A C C+ +( ) 0 * 0 * 0 *

aIf r r,   and ′ θ  are the object distance, image distance, and incidence angle to the normal,
respectively, then

a a
Q

a
r r

A
r r

C A
rrij

ij
j= = +

′




 = −

′




 = +

′20 20
2

4
1 1

2
1 1 1

cos

cos
,

sin
,

θ
     where           

θ θ

The aij’s for spheres, circular cylinders, paraboloids and hyperboloids can also be obtained

from Tables 1 and 2 by suitable choices of the input parameters r r,   and ′ θ .

Table 2:  Toroida aij’s [33]
  j

i

0 1 2 3 4 5 6

0 0 0 1 2( )ρ 0 1 8 3( )R 0 1 16 5( )ρ
1 0 0 0 0 0 0 *

2 1 2( )R 0 1 4 2( )ρR 0 ( ) ( )2 16 3 3ρ ρ+ R R 0 *

3 0 0 0 0 * 0 *

4 1 8 3( )R 0 3 16 4( )ρR 0 * 0 *

5 0 0 * 0 * 0 *

6 1 16 5( )R 0 * 0 * 0 *

aR and ρ are the major and minor radii of the bicycle-tire toroid we are considering.
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Table 3:  Coefficients Cijk of the expansion of F a

C
r011
1= − C

S
020 2

=

C
S

r r022 2 34

1

2
= − − C

S

r031 22
=

C
a S

r
a040

02
2 2

04
4

8
= − − cosα C

a

r

S a

r

S

r042
04

2

2
02
2

3 42

3 4

16

3

4
= + − +cosα

C100 = − sinα C
r102 22

= sinα

C
r111 2= − sinα

C
S

r
a120 122

= −sin
cos

α α

C
a

r

S

r131
12

2 3
3

2
= − +cos sinα α

C
a

r

S

r r122
12

2 3 42

3

4

3

2
= − −cos sin sinα α α

C
T

200 2
= C a

r
a a a S a

r
a S140 14 02 12 12 04 2 02

2 21

2
2 2

8
4 3= − + + −( ) + −( )cos cos sin

sinα α α α

C
T

r r202 2

2

34 2
= − + sin α

C
T

r r211 2

2

32
= − sin α

C
r013 3
1

2
= C a

T

r300 30 2
= − +cos

sinα α

C a
r

a a TS a
S

r220 22 20 02 12

2

2
1
4

4 2 2
2

= − + −( ) +−cos sin
sinα α α

C
r

a
r

ST a a a
r

T S
r222 2 22 3 02 20 12 4

2
2

5

1

2

1

8
3 4 6 2

3

4
2

3= + − +( ) + −( ) −cos sin sin
sinα α α α

C
r

a
r

ST a a a
S

r231 2 22 3 02 20 12

2

4
1 1

4
3 4 6 2

3= − + − + −( ) +cos sin
sinα α α
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r
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r
a T a a S a S TS a a a

r
a S

240 24 12
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04 20 22 04 14 02 22

2 02
2
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2
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2

3 02
2 2

1

2
2 2 2

1

16
4 8 12 2 3 16 8 2

4
2 3
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+ − − + + + −( ) + −( )

cos sin cos cos sin

sin sin sin
sin

α α α α α

α α α α

C
a

r

T
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30

2 3

3

42

3

4 2
= − +cos sin sinα α α

C
a

r

T

r r311
30

2 3

3

4
3

2
= − + −cos sin sinα α α
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*Table 3:  Coefficients Cijk of the expansion of F a (continued)

C a
r

a a a a a S a T a

r
a a ST a

S

r

320 32 20 12 30 02 30 12 22

2 20 02 12
2

3

3

1

2
2 2 2

1

4
4 3 4

2

= − + + + + −( )

+ − −( ) +

cos cos cos sin

sin sin cos sin
sin

α α α α

α α α α α

C a
r

a T a
T

r400 40 20
2 2

30

2

2
1

8
4 4 2

2
= − + − −( ) +cos sin

sinα α α

C
r

a T a
a

r

T

r r402 3 20
2 2

30
40

2

2

4

4

5

1

16
4 3 12 2

2

3

2 2
= − + +( ) + − +sin

cos sin sinα α α α

C
a

r r
a T a

T

r r411
40

2 3 20
2 2

30

2

4

4

5

1

8
4 3 12 2

3= − + − −( ) + −cos
sin

sin sinα α α α

C a
r

a a a a a a a a S a T

r
a S a a T ST a S a T a a a a a

420 42 20 22 12 30
2

02 40 32 40 22

2 20
2

02 20
2

30 12 02 30 22 12 20

1

2
2 2 2 2

1

16
4 8 3 12 2 8 2 2 2 2

= − + + + − + +( )
+ − − + + +( ) + − +( )( )
+

cos sin sin cos cos

sin sin sin

α α α α α

α α α

11

2
2 3 2

23 02 20
2 2

12
3

4

4r
a a ST a

S

r
sin sin cos sin

sinα α α α α− −( ) +

C a
r

a a a T a
r

a a
T

r

T

r500 50 20 30 30 40 2 20
2

30

2

2

3

3
1

2
2 2

2
2

3

8 2
= − + + −( ) + −( ) − +cos cos sin

sin
sin

sin sinα α α α α α α

C a
r

a a a a T a

r
a T T a a a T a

r
a T a

T

600 60 30
2 2

20 40 40 50

2 20
2 3

20 30 30 40
2

3 20
2 2 2 2

30
3

4

1

2
2 2

1

16
4 16 12 2 16

1

4
2 3 4

2

= − + + + −( )
+ − + + + −( )
+ − −( ) +

cos sin cos sin

sin sin cos sin

sin sin cos sin
sin

α α α α

α α α α

α α α α α
rr4

aThe coefficients for which i j k i j k j k≤ ≤ ≤ + + ≤ + =6 4 2 6, , , ,   even are included in this table. The
only addition to those is C013 , which has some interest, because, when the system is specialized to be
symmetrical about the x axis, it represents a Seidel aberration, namely distortion.
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Table 4: Coefficients nijk of the expansion of F for a grating with variable line spacing

n j k

n n v v v v

n v n v v v v v v v

n v v n v v v v v v v v v

ijk = ≠

= = − + −( )
= − = − + + −( )
= −( ) = − + − − + +

0 0

1 2 4

2 3 2 5

3 4 3 3 2

100 400 1
3

1 2 3

200 1 500 1
4

1
2

2 2
2

1 3 4

300 1
2

2 600 1
5

1
3

2 1 2
2

1
2

3 2 3

   for   ,

22 61 4 5v v v−( )

B.2 Determination of the Gaussian image point

By definition the principal ray AOB0 arrives at the Gaussian image point B0( , , )′ ′r z0 0 0β  (Fig. 4.7)
and its direction is given by Fermat’s principal which implies
∂ ∂ ∂ ∂F w F lw l w l[ ] = [ ] == = = =0 0 0 00 0, ,,       whence

m

d

z

r

z

r

λ α β
0

0
0

0
0= + + ′

′
=sin sin ,    

, (11)

The tangential focal distance ′r0  is obtained by setting the focusing term F200 equal to zero and is
given by

T r T r
m

T r T r

v m

d

, , , ,α β λ
λ

γ δ

λ

( ) + ′( ) = − ( ) ± ( ){ }















0 0
0

1

0

0         Rowland

  holographic

        varied line spacing

C D

 (12)

Equations (11) and (12) determine the Gaussian image point B0, and in combination with the
sagittal focusing condition (F020=0), describe the focusing properties of grating systems under
the paraxial approximation.

For a Rowland spherical grating the focusing condition (Eq. (12)) is

cos cos cos cos2 2

0
0

α α β β
r R r R

−






+
′

−






=

(13)

which has important special cases. (i) plane grating, R = ∞  implying ′ = −r r0
2 2cos cosα β , (ii)

object and image on the Rowland circle, or r R r R M= ′ = =cos , cosα β  and 0 1 and (iii) β=90°
(Wadsworth condition). The focal distances of TGMs and SGMs are also determined by eq. (13).
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B.3 Calculation of ray aberrations

In an aberrated system, the outgoing ray will arrive at the Gaussian image plane at a point BR
displaced from the Gaussian image point B0 by the ray aberrations ∆ ∆′ ′y z and  (Fig. 4.7). The
latter are given by [34, 35, 36]

∆ ∆′ = ′ ′ = ′y
r F

w
z r

F

l
0

0
0cos

,
β

∂
∂

∂
∂

     
, (14)

where F is to be evaluated for A (  B= = ′ ′r z r z, , ), ( , , )α β0 0 0 . By means of the expansion of F,
these equations allow the ray aberrations to be calculated separately for each aberration type.

∆ ∆′ = ′ ′ = ′− −y
r

F iw l z r F w jlijk ijk
i j

ijk ijk
i j0

0

1
0

1

cos
,

β
     

. (15)

Moreover, provided the aberrations are not too large, they are additive, so that they may either
reinforce or cancel.

C. DISPERSION PROPERTIES

C.1  Angular dispersion

∂λ
∂β

β

α







= d

m

cos
(16)

C.2  Reciprocal linear dispersion

∂λ
∂

β β

α∆ ′( )






=
′

≡
′y

d

mr

d

mr

cos [ ]cos
[ ]

–10 3 Å
m

Å mm
, (17)

C.3  Magnification (M)

M
r

r
( )

cos
cos

λ α
β

= ′
. (18)

C.4  Phase-space acceptance (ε)

ε λ λ= = =( )N N S MSS S∆ ∆
1 2 2 1  assuming (19)

where N is the number of participating grooves.
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D. RESOLUTION PROPERTIES

The following are the main contributions to the width of the instrumental line spread function.
The actual width is the vector sum.

(I) ENTRANCE SLIT (WIDTH S1):

∆λ α
S

S d

mr1

1= cos
. (20)

(II) EXIT SLIT (WIDTH S2):

∆λ β
S

S d

mr2

2=
′

cos
. (21)

(III) ABERRATIONS (OF PERFECTLY MADE GRATING):

∆ ∆λ β ∂
∂A

y d

mr

d

m

F

w
= ′

′
= 





cos
. (22)

(IV) SLOPE ERROR ∆φ  (OF IMPERFECTLY MADE GRATING):

∆ ∆λ α β φ
SE

d

m
=

+( )cos cos
, (23)

Note that, provided the grating is large enough, diffraction at the entrance slit always guarantees
a coherent illumination of enough grooves to achieve the slit-width limited resolution and a
diffraction contribution to the width need not be added to the above.

1. EFFICIENCY

The most accurate way to calculate grating efficiencies is by the full electromagnetic theory [37,
38] for which a code is available from Neviere. However, approximate scalar-theory calculations
are often useful and, in particular, provide a way to choose the groove depth (h) of a laminar
grating. According to Bennett [39], the best value of the groove-width-to-period ratio (r) is the
one for which the usefully illuminated groove area is equal to the land area. The scalar theory
efficiency of a laminar grating with r=0.5 is given by [40]
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E
R

P
h

P

E

R

m
Q Q Q m

R

m
Q m

P
h

d
  Q

m h

d

m

0
2

2 2
2

2 2
2

0 0

4
1 2 1

4
1

1 2

4

= + −( ) 



 + −( )








=
− +( ) +{ } =

=










= = ±( )

+ − +

+

±

cos
cos

cos cos cos

cos

tan
, tan tan

π α
λ

π
δ

π

α π α β

odd

                                          even

where  

,, cos cos   δ π
λ

α β= +( )2 h

 (24)

and R is the reflectance at angle αβ .
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